The 3′ Splice Site of Influenza A Segment 7 mRNA Can Exist in Two Conformations: A Pseudoknot and a Hairpin
نویسندگان
چکیده
The 3' splice site of influenza A segment 7 is used to produce mRNA for the M2 ion-channel protein, which is critical to the formation of viable influenza virions. Native gel analysis, enzymatic/chemical structure probing, and oligonucleotide binding studies of a 63 nt fragment, containing the 3' splice site, key residues of an SF2/ASF splicing factor binding site, and a polypyrimidine tract, provide evidence for an equilibrium between pseudoknot and hairpin structures. This equilibrium is sensitive to multivalent cations, and can be forced towards the pseudoknot by addition of 5 mM cobalt hexammine. In the two conformations, the splice site and other functional elements exist in very different structural environments. In particular, the splice site is sequestered in the middle of a double helix in the pseudoknot conformation, while in the hairpin it resides in a two-by-two nucleotide internal loop. The results suggest that segment 7 mRNA splicing can be controlled by a conformational switch that exposes or hides the splice site.
منابع مشابه
The influenza A segment 7 mRNA 3′ splice site pseudoknot/hairpin family
The 3' splice site of the influenza A segment 7 transcript is utilized to produce mRNA for the critical M2 ion-channel protein. In solution a 63 nt fragment that includes this region can adopt two conformations: a pseudoknot and a hairpin. In each conformation, the splice site, a binding site for the SF2/ASF exonic splicing enhancer and a polypyrimidine tract, each exists in a different structu...
متن کاملStructural Features of a 3′ Splice Site in Influenza A
Influenza A is an RNA virus with a genome of eight negative sense segments. Segment 7 mRNA contains a 3' splice site for alternative splicing to encode the essential M2 protein. On the basis of sequence alignment and chemical mapping experiments, the secondary structure surrounding the 3' splice site has an internal loop, adenine bulge, and hairpin loop when it is in the hairpin conformation th...
متن کاملAn RNA conformational shift in recent H5N1 influenza A viruses
UNLABELLED Recent outbreaks of avian influenza are being caused by unusually virulent H5N1 strains. It is unknown what makes these recent H5N1 strains more aggressive than previously circulating strains. Here, we have compared more than 3000 RNA sequences of segment 8 of type A influenza viruses and found a unique single nucleotide substitution typically associated with recent H5N1 strains. By ...
متن کاملFolding a stable RNA pseudoknot through rearrangement of two hairpin structures
Folding messenger RNA into specific structures is a common regulatory mechanism involved in translation. In Escherichia coli, the operator of the rpsO gene transcript folds into a pseudoknot or double-hairpin conformation. S15, the gene product, binds only to the pseudoknot, thereby repressing its own synthesis when it is present in excess in the cell. The two RNA conformations have been propos...
متن کاملMolecular dissection of the pseudoknot governing the translational regulation of Escherichia coli ribosomal protein S15
The ribosomal protein S15 controls its own translation by binding to a mRNA region overlapping the ribosome binding site. That region of the mRNA can fold in two mutually exclusive conformations that are in dynamic equilibrium: a structure with two hairpins and a pseudoknot. A mutational analysis provided evidence for the existence and requirement of the pseudoknot for translational control in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2012